
Human-Robot Teaming on Graphs with Risky Edges

Sara Oughourli, Manshi Limbu, Zechen Hu, Xuan Wang, Xuesu Xiao, and Daigo Shishika

I. INTRODUCTION

We are interested in designing coordinated group motion,
where the safety or cost for one agent to move from one
location to another may depend on the support provided by
its teammate. For example, consider a scenario where a team
of human and robot must traverse an environment with some
“risk” edges as shown in Fig. 1. Those risks might represent
actions such as going up a ladder, crossing a "shaky" bridge,
or walking through a dark tunnel. In these situations, a human
(or robot) teammate can support the other by holding the
ladder, stabilizing the bridge, or lighting up the tunnel. We
capture the feasibility of these "supporting" actions in the
green dashed arrows in Fig. 1, extending from the nodes
from which the support can be provided. The core questions
we seek to answer are: (i) when such support/coordination
is beneficial, and (ii) how to best coordinate the actions as
a team to minimize the overall cost.

We formulate a problem that incorporates support actions
to a minimum-cost graph traversal problem. We then propose
a solution approach based on the notion of joint state graph
(JSG) formulation, converting the problem into single-agent
path planning. To address the curse of dimensionality, a
hierarchical decomposition method based on Critical Joint
State Graph (CJSG) is introduced for two-level planning.
Complexity and statistical analyses demonstrate the efficacy
of our algorithm.

II. PROBLEM FORMULATION

The base graph is denoted by G = (V, E), where V
is a set of nodes, and E is a set of edges. Each edge
ei,j ∈ E is associated with a set of support nodes, Zi,j ⊆ V .
The environment graph incorporates the notion of risk and
support. The action set for an agent n ∈ {A,B} at node i
is given as An

i = {{ai,j}j∈Ni
, as}, where the first set is for

moving, and as is for supporting its teammate. To capture the
effect of supporting actions, the state and action dependent
cost (for agent A) is given by

ctA(·) =

ci,j , if aA = ai,j and pB /∈ Zi,j or aB ̸= as,

c̃i,j , if aA = ai,j , pB ∈ Zi,j , and aB = as,

c̃, if aA = as,

where (·) represents joint state and actions (pt, at). The
reduced cost due to support is captured by c̃i,j .

Given a sequence of actions that takes the agents from
start to goal node, we can compute the sum of total costs to

The authors are with George Mason University. Corresponding authors:
{xwang64,xiao,dshishik}@gmu.edu

1
A

B

2 3

4

5

8

9

6

7

Support

Risk

Non-Risk

Goal

10

11

12

Fig. 1. Example of an environment graph with risk edges and supporting
nodes.

obtain the overall cost of the path. The goal is to find a pair
of sequences (one for each agent) that minimizes the overall
cost. While this problem can be solved as an instance of
MDP, we will introduce a simplification using the concept
of Joint State Graph (JSG).

III. METHOD

A. Joint State Graph

Let the JSG be a graph where its nodes represent the joint
states, and its edges represent possible transitions between
those joint states. The cost associated with each edge is the
sum of costs for each agent’s actions. This entails that JSG
subsumes the action selection in the original problem. Now
the joint action-selection problem is converted into a single-
agent path-planning in JSG, which can be solved with any
standard shortest-path alrogithm. Although planning on JSG
is conceptually simple, it can become computationally ex-
pensive with greater graph sizes. The next section addresses
this issue.

B. Critical Joint State Graph

For computational efficiency, we propose to categorize
the agents’ movements into coupled and decoupled modes,
where only the coupled movements need to be planned in
JSG, and the decoupled movements can be independently
planned by each agent on base graph. To do this, depending
on whether the edges in the environment graph have at least
one support node, we can represent the possible supporting
behaviors between two agents based on their locations. Then
by collecting all possible supporting behaviors, we construct
a Critical Joint State Graph (CJSG) that only captures two
agents’ coupled movements. The node of CJSG is any
joint state that the two agents (i) can initiate or complete
supporting behaviors, (ii) at their start or goal position of
the planning task. We let CJSG be fully connected. The edge
costs are associated with two agents moving over the base
graph or a possible lower cost when they perform a support

behavior. We can theoretically validate that the path planned
on CJSG has the same optimal cost as the one on JSG.

IV. RESULTS

Animations of coordinated team behavior are available at
https://youtu.be/oDqfBxmjx_E. We present results on
computational complexity in the following.

A. Quantification of Computational Complexity.

We quantify the computational complexity of the search
algorithm applied to the JSG and the CJSG methods. Con-
sider using Dijkstra’s Algorithm. The complexity of optimal
path search on JSG is

OJSG = O(|V|4).

where the number of nodes in JSG is |V|2. In contrast, the
complexity of the CJSG method is

OCJSG = O(|V|2 log(|V|)) +O(|M|2).

where the first term is the graph construction complexity of
CJSG. It requires computing the shortest path between any
pair of nodes in the base graph, assuming the use of John-
son’s algorithm. The second term is the search complexity,
where |M| is the number of nodes in the constructed CJSG.

To compare OCJSG and OJSG, we only need to compare
O(|M|2) and O(|V|4). If we assume the number of support
edges in the environment graph is small, then |M| ≪ |V|2.
The worst boundary scenario happens when support edges
widely exist in environment graph. In this case, |M| → |V|2,
but |M| is still upper bounded by |V|2 because critical joint
states are subsets of joint states. Thus, OCJSG is always no
worse than OJSG.

B. Graph Construction Analysis

Our analysis of graph construction times for JSG and
CJSG demonstrates CJSG’s consistent efficiency advantage.
This holds true across different conditions, such as varying
node counts (from 10 to 30) and increasing risk edges ratios

(1, 1)

(1, 2)

(1, 4)

(2, 1) (4, 1)

(2, 2)

(2, 4)

(4, 2)

(4, 4)

(1, 3) (2, 3) (4, 3)

(1, 5) (2, 5) (4, 5)

(3, 1)

(3, 2)

(3, 4)

(3, 3)

(3, 5)

(5, 1)

(5, 2)

(5, 4)

(5, 3)

(5, 5)

Fig. 2. Joint State Graph from the 5-node environment graph. Red (resp.
green) edges represent traversing risk edge without (resp. with) support.

5 10 15 20 25 30
Number of Nodes

0

5

10

15

20

25

30

35

40

To
ta

l S
ol

ut
io

n
Ti

m
e(

s)

Comparision of JSG and CJSG
JSG with 1/5 risk edges ratio
CJSG with 1/5 risk edges ratio
JSG with 1/3 risk edges ratio
CJSG with 1/3 risk edges ratio
JSG with 1/2 risk edges ratio
CJSG with 1/2 risk edges ratio

Fig. 3. Comparison of time taken by JSG and CJSG to generate total
solution with respect to increasing number of nodes and risk edges ratio.

(from 1/5 to 1/2). Despite the advantage, when the risk edge
ratio approaches 1/2 nearly all joint states become critical
joint states i.e., |M| → |V|2. Thus, the construction times of
both methods converge and are close to each other.

C. Path Planning Analysis
Our evaluation of path planning time for JSG and CJSG

reveals CJSG’s efficiency advantage across varying nodes
and risk edges ratios. This advantage persists as the nodes
increase from 10 to 30 or when the risk edges ratio is
increased within a fixed node size. This pattern is consistent
for nodes 10, 20, and 30. These results emphasize CJSG’s
superior efficiency in shortest path planning as the ratio of
risk edges to nodes increases.

Based on experimental results, we calculate the total time
taken by both JSG and CJSG to determine the final solution.
This total time involves the time spent on graph construction
and shortest path planning. In Fig. 3, as the number of nodes
increases, the total solution generation time for JSG rises
more significantly than for CJSG. Similarly, when the risk
edges ratio increases, JSG’s solution generation time grows
more rapidly compared to CJSG. These findings indicate
that CJSG is more efficient than JSG in overall solution
generation.

V. CONCLUSION
We propose a novel formulation to study human-robot

teaming in graph environments, where an agent can leverage
"support" from its teammate to effectively reduce traversal
costs on specific edges. Our method transforms multi-agent
path planning problems into single-agent planning by in-
corporating agent actions into the edges in the joint state
space. To address scalability, we introduced a hierarchical
decomposition for path planning which is significantly more
efficient in path planning. Future research directions include
integrating advanced risk concepts from game theory and
stochastic costs, as well as exploring scalability in terms of
the number of agents in complex graph environments.

https://youtu.be/oDqfBxmjx_E

	INTRODUCTION
	PROBLEM FORMULATION
	METHOD
	Joint State Graph
	Critical Joint State Graph

	RESULTS
	Quantification of Computational Complexity.
	Graph Construction Analysis
	Path Planning Analysis

	CONCLUSION

