GEORGE ASON

INTRODUCTION

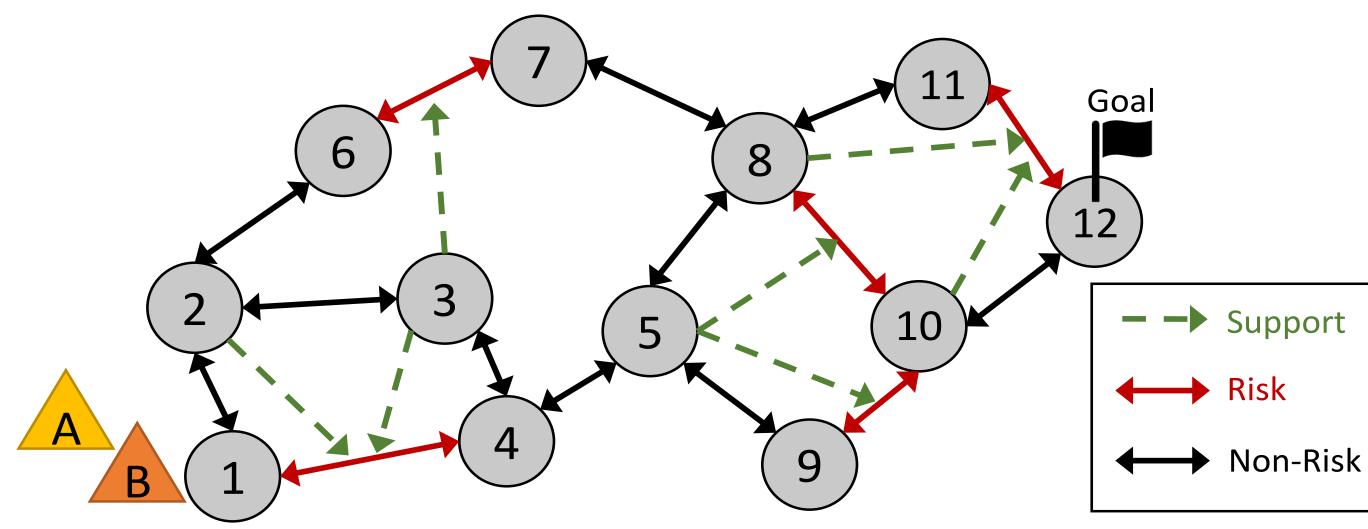
Human-robot teams traversing an environment with risks can provide support for each other from specific nodes.

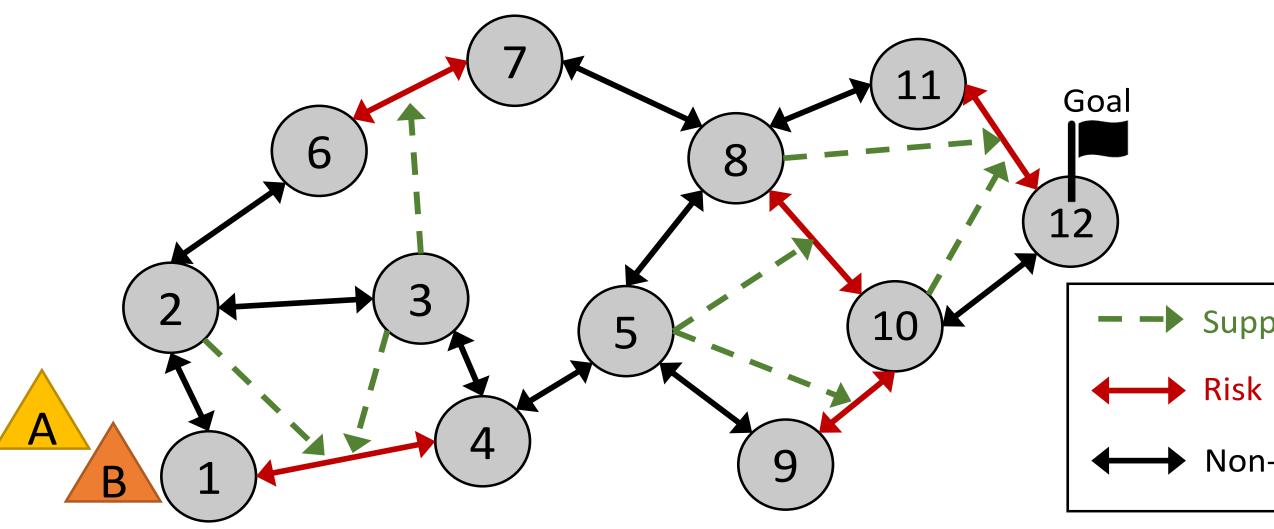
We want to know:

- When such support/coordination is beneficial?
- How to best coordinate the actions as a team to minimize the overall cost?

PROBLEM FORMULATION

Formulate it as a minimum-cost graph traversal problem:

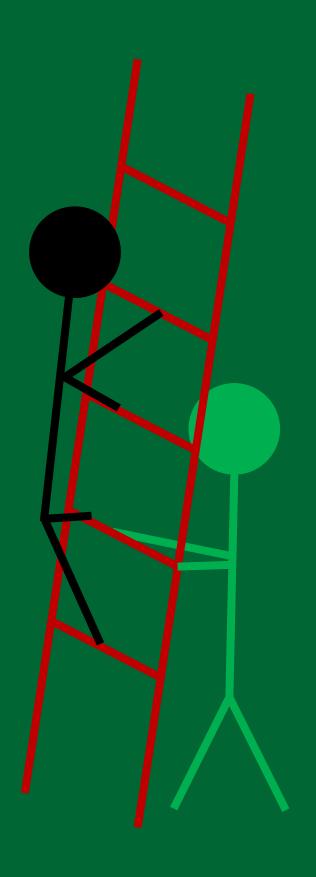

- Base graph $\mathbb{G} = (\mathcal{V}, \mathcal{E})$.
- Environment graph incorporates a notion of risk and support.
- Each edge $e_{i,i} \in \mathcal{E}$ is associated with a set of support nodes $Z_{i,i} \subseteq \mathcal{V}$.


• Action set for agent *n* at node *i* is
$$\mathcal{A}_i^n = \left\{ \{a_{i,j}\}_{j \in \mathcal{N}_i}, a_s \right\}.$$

• The different costs for agent A is: $c_{A}^{t}(p^{t}, a^{t}) =$ $\begin{cases} c_{i,j}, \text{ if } a_A = a_{i,j} \text{ and } p_B \notin Z_{i,j} \text{ or } a_B \neq a_s, \\ \tilde{c}_{i,j}, \text{ if } a_A = a_{i,j}, p_B \in Z_{i,j}, \text{ and } a_B = a_s, \end{cases}$

Ĉ, $\text{if } a_A = a_S,$ 0, if $a_A \neq a_s$ and if $a_A \neq a_{i,j}$.

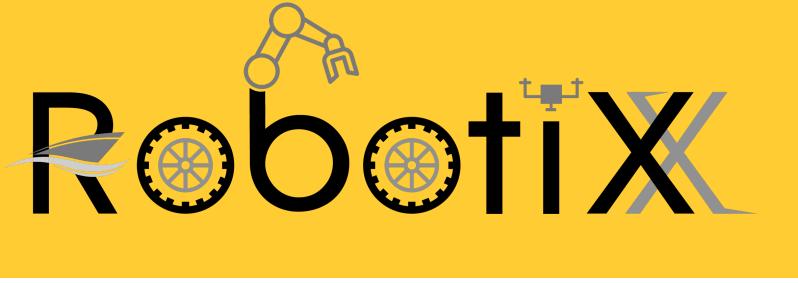
- Compute costs of each action in a sequence to obtain overall cost.
- Goal is to find a pair of sequences (one for each agent) that minimizes overall costs.



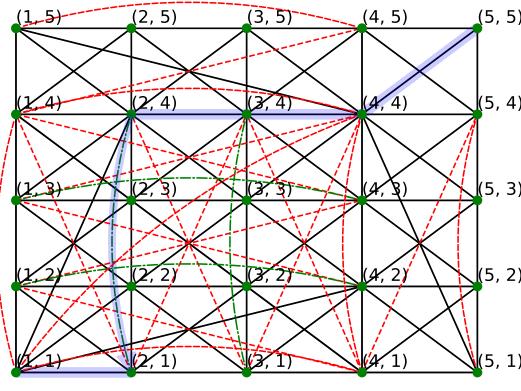
Team Coordination on Graphs with State-Dependent Edge Costs

Manshi Limbu, Zechen Hu, Sara Oughourli, Xuan Wang, Xuesu Xiao, and Daigo Shishika George Mason University

We provide a problem formulation and two methods for solving multi-agent cooperation on a graph with a notion of *risk* and support.


Environment graph with *risk* edges and *support* nodes

One agent provides *support* by holding up the *ladder* while the other agent climbs.


Experimentally, we find that CJSG is more efficient overall than JSG in generating optimal path planning solutions.

METHODS Joint State Graph (JSG):

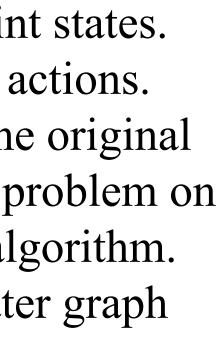
- Nodes represent the joint states.
- Edges represent possible transitions between those joint states.

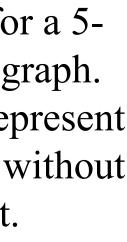
• Cost of each edge is the sum of costs for each agent's actions. The point is that JSG *subsumes* the action selection of the original problem, converting it into a single-agent path planning problem on JSG that can be solved with any standard shortest-path algorithm. However, it can be computationally expensive with greater graph sizes.

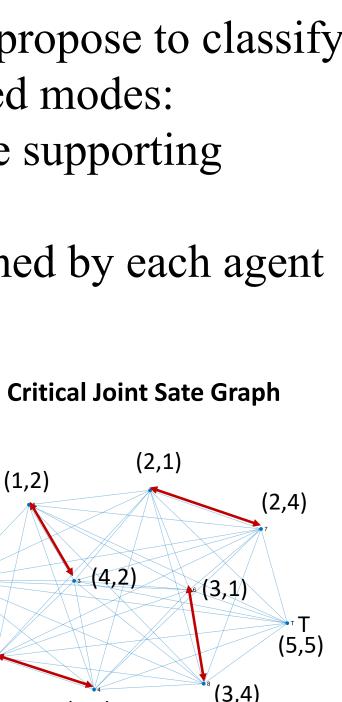
Joint State Graph for a 5node environment graph. Red (green) edges represent traversing risk edge without (with) support.

Supporting (3)	(2,1) (2,2) (2,3) → (2,3)	2,4) (2,5)	
2	(3,1) (3,2) (3,3) → (3	Fully 3,4) (3,5)	$\xrightarrow{\text{Connected}} S \xrightarrow{(4,2)} (1,1)$
	(4,1) (4,2) (4,3) (4	4,4) (4,5)	
A	Agent B (5,1) (5,2) (5,3) (5	5,4) (5,5)	(1,3) (4,3)
(a)	(b)		(0
Fully connected	d graph where nod	les repre	esent joint states w
initia	ite/complete suppo	ort and the	he start/goal nodes
RESULTS			
ා Comparision c	of JSG and CJSG	Nodes	sky JSG

(s)	Comparision of JSG and CJSG		Risky	JSG		CJSG	
	JSG with 1/5 risk edges ratio	Nodes	Edge	GC	SP	GC	SP
e 40 20 11 30	CJSG with 1/5 risk edges ratio	10	1/5	0.21±0.04	0.14 ± 0.02	0.01 ± 0.00	0.02 ± 0.02
			1/3	0.18 ± 0.05	0.15 ± 0.00	0.09 ± 0.02	0.13 ± 0.02
	CJSG with 1/3 risk edges ratio		1/2	$0.19 {\pm} 0.03$	$0.16 {\pm} 0.01$	$0.18 {\pm} 0.01$	$0.15 {\pm} 0.05$
20 Solution	JSG with 1/2 risk edges ratio	20	1/5	3.17±0.04	2.10±0.04	$0.65 {\pm} 0.09$	$0.43 {\pm} 0.07$
$\overline{0}_{10}$			1/3	$3.40 {\pm} 0.06$	$2.20{\pm}0.07$	$1.77 {\pm} 0.05$	$0.80{\pm}0.01$
			1/2	$3.86 {\pm} 0.09$	2.32 ± 0.03	$3.64 {\pm} 0.59$	1.25 ± 0.12
o Total		30	1/5	$20.94 {\pm} 0.83$	11.64±0.13	6.11±0.55	2.80±0.18
H I	5 10 15 20 25 30		1/3	22.49 ± 1.71	$12.33 {\pm} 0.50$	$13.82 {\pm} 0.73$	$4.60 {\pm} 0.22$
	Number of Nodes		1/2	$25.98 {\pm} 0.43$	13.44 ± 0.14	26.82 ± 1.49	$6.91 {\pm} 0.27$


Critical Joint State Graph (CJSG):


To address JSG's computational inefficiency, we propose to classify the agents' movements into coupled and decoupled modes:


- Coupled movements are planned in JSG, where supporting behavior is possible.
- Decoupled movements are independently planned by each agent on base graph.

Support Graph Critical Joint States

(1,1) (1,2) (1,3) ing nodes

